
Enabling Advanced and Context-Dependent
Access Control in RDF Stores

? Fabian Abel1, Juri Luca De Coi2, Nicola Henze1,
Arne Wolf Koesling2, Daniel Krause1, Daniel Olmedilla2

1 Distributed Systems Institute (KBS), University of Hannover, Hannover, Germany
{abel,henze,krause}@kbs.uni-hannover.de,

2 L3S Research Center and University of Hannover, Hannover, Germany
{decoi,koesling,olmedilla}@L3S.de

Abstract. Semantic Web databases allow efficient storage and access to
RDF statements. Applications are able to use expressive query languages
in order to retrieve relevant metadata to perform different tasks. How-
ever, access to metadata may not be public to just any application or
service. Instead, powerful and flexible mechanisms for protecting sets of
RDF statements are required for many Semantic Web applications. Un-
fortunately, current RDF stores do not provide fine-grained protection.
This paper fills this gap and presents a mechanism by which complex and
expressive policies can be specified in order to protect access to metadata
in multi-service environments.

1 Introduction

The Semantic Web vision requires that existing data is provided with machine-
understandable annotations. These annotations (commonly referred to as meta-
data) are meant to facilitate tasks such as data sharing and integration. However,
it is often the case that information cannot be shared unconditionally: many Se-
mantic Web applications require to control when, what and to whom information
is disclosed. Nevertheless, existing metadata stores do not support access control,
or their support is minimal (e.g., protection may apply only to the database as a
whole and not to the data it contains). On the one hand, access control could be
embedded within the metadata store: in this case the access control mechanism
would be repository-dependent and not portable across different platforms. On
the other hand, a more general solution would be adding a new component on
top of the metadata store in charge of access control-related issues. Still this
second approach requires to face problems which are not trivial, since the obvi-
ous solution of filtering out private triples from the results is not possible. The
reason is that those triples may not be known in advance, as it happens when the
result of the query consists of triples not previously available in the metadata
store.
? In alphabetical order

Furthermore, the Semantic Web envisions that interactions can be performed
between any two entities, even if they did not carry out common transactions
in the past, making unsuitable traditional identity-based access control mecha-
nisms. Therefore, more advanced mechanisms (based e.g., on properties of the
requester) are required. Semantic policy languages lately emerged in order to ad-
dress these requirements: they provide the ability to specify complex conditions
such as time constraints and may even provide an interface to query external
packages such as other repositories. However, evaluating such constraints for
each triple to be potentially returned by the metadata store is not affordable,
since it is too expensive in terms of time.

In this paper we present an architecture that integrates advanced access
control mechanisms based on Semantic Web policies with different kinds of RDF
metadata stores. Given an RDF query, our framework partially evaluates all
applicable policies and constraints the query according to the result of such
evaluation. The modified query is then sent to the RDF store which executes it
like an usual RDF query. Our framework enforces fine-grained access control at
triple level, i.e., all triples returned as a response to the query can be disclosed
to the requester according to the policies in force.

The rest of the paper is organized as follows: §2 presents an scenario in order
to motivate the need for flexible access control mechanisms over semantic data.
Different approaches and related work are described in §3. In §4 we introduce
how a policy engine can be integrated on top of an RDF store in order to restrict
access at the RDF triple level. §5 presents our current implementation which is
used in order to perform a set of experiments, which estimate the impact of this
approach and are included in this section too. Finally, §6 concludes the paper
and outlines our future work.

2 Access Control in RDF Stores

The Personal Reader [1] is a distributed multi-service and multi-user environ-
ment. In the Personal Reader Framework there exist many modular applications
divided into (i) Personalization Services for accessing and personalizing Seman-
tic Web data sources (ii) Syndication Services for aggregating and processing
data provided by other services and (iii) User Interfaces which can be accessed
by different users. A remarkable feature of the Personal Reader Framework is
its plug-and-play nature, i.e., new Personalization and Syndication Services can
be plugged into the system and immediately used by currently available services
and users.

Enabling behavior and content adaptation in different applications requires
the use of a shared user profile. Such a user profile is in charge of storing semantic
data from different services, application domains, and users. RDF databases
have been chosen to store these metadata, since they provide efficient access and
high flexibility: arbitrary RDF data referring to various ontologies can be stored
within the RDF database.

Different services may store in or require sensitive data from the user profile
in the RDF repository. It is crucial for the user to be able to specify which (kinds

of) services are allowed to access and retrieve which part of the data stored in
the user profile. For example, Alice must be able to allow a recommendation
service to access information about her friends but not her private information
(e.g., address or telephone number). Similarly, a means needs to be provided
to allow Bob to restrict access to his health-related data only to his medical
service. Health-related data may be defined as instances of a class Health in
some ontology, and the medical service may need to identify itself by providing
some credential.

The most part of current RDF databases provide none or very simple secu-
rity mechanisms. For example, one of today’s most widespread RDF database
management systems, Sesame [2], allows to define access rights only for a whole
database. Therefore, a more fine-grained solution is required, in which access
to smaller fragments of data (e.g., RDF triples) can be checked at query time.
Furthermore, the result of the check may depend on conditions unrelated to the
data to be accessed (contextual conditions), such as properties of the requester
(possibly to be certified by credentials) or environmental factors (e.g., time of
the request). Ideally, a good solution should be expressive and flexible while at
the same time not excessively affecting the response time.

3 Related Work

The problem we focus on in this paper is how to restrict access to RDF data.
One way to address this problem is defining a priori which subsets of an RDF
database can be accessed by some requester. For example, Named Graphs [3]
can be used to evaluate SPARQL queries [4] based on allowed RDF graphs [5] or
in combination with TriQL.P [6] which allows the formulation of trust-policies,
in order to answer graph-based queries. Those queries describe conditions un-
der which suiting data should be considered trustworthy. Access control based
on identity could be performed if all requesters and their allowed graphs were
known in advance. However, this is not the case in our scenario presented above
and since access to data may be (not) allowed depending on contextual condi-
tions, these approaches do not apply: on the one hand named graphs cannot
be statically precomputed for each possible combination of environmental fac-
tors, since their number would be too big; on the other hand named graphs
cannot be created at runtime, since the creation process would excessively slow
down the response time. Furthermore, the plug-and-play nature of the Personal
Reader Framework as well as the possibility that services dynamically change
the RDF database itself by adding or removing data from the user profile would
significantly complicate managing such named graphs.

[7] defines simple rule-based policies over the RDF database: such policies
describe subgraphs on which actions like read and update can be executed: sub-
graphs are identified by specifying graph patterns. Some approaches also respect
RDF Schema entailments [8]. However, all these approaches require to instanti-
ate the graph patterns, i.e., to generate one graph for each policy and execute the
given query on each graph, hence leading to longer response times. Furthermore,
these approaches cannot be applied to contextual queries either.

Finally, many policy languages (e.g., KAOS [9], Rei [10], PeerTrust [11] or
Protune [12]) allow to express access authorizations on the Semantic Web by
means of policies. However, none of them describes how to integrate policies in
RDF databases.

4 Policy-Based Query Expansion

As shown in §3, existing work on RDF data protection does not suit the require-
ments of dynamic Semantic Web environments such as the Personal Reader
Framework presented in §2. Available solutions do not handle contextual in-
formation in a proper way, as they either require a large amount of memory
or unacceptably increase the response time. Filtering returned results is not
an adequate solution, either: current RDF query languages allow to arbitrarily
structure the results, as shown in the following example3.

CONSTRUCT {CC} newns:isOwnedBy {User}

FROM {User} ex:hasCreditCard {CC}; foaf:name {Name}

WHERE Name = ’Alice’

Post-filtering the results of a query is hence not straightforward whenever
their structure is not known in advance. It could be possible to break con-
structs queries into a select query and the generation of the returned graph
(construct), therefore avoiding this problem. However, the query response time
may be considerably too large since this approach cannot make use of repository
optimizations and policies are enforced after all data (allowed and not allowed)
has been retrieved. As an example, suppose an unauthorized requester submits
a query asking for all available triples in the store. A post-filtering approach
would retrieve all triples first and then filter them all out.

To address these problems we decided to enforce access control as a layer on
top of RDF stores (also making our solution store independent). Our strategy is
to pre-evaluate the contextual conditions of the policies, which do not depend on
the content of the RDF store. Then, we expand the queries before they are sent
to the database, therefore integrating the enforcement of the rest of (metadata)
conditions with the query processing, thereby restricting the queries in such a
way that they only utilize allowed RDF statements. This way, policies can hold
a greater expressiveness and support both metadata and contextual conditions,
while pushing part of its enforcement to the highly optimized query evaluation
of the RDF store. This approach allows to include more complex conditions
without dramatically increasing the overhead produced by policy evaluation, and
while relying on the underlying RDF store to evaluate RDF Schema capabilities
(as discussed in [8]).

3 Our examples use SeRQL [13] syntax (and for simplicity we do not include the
namespace definitions), since SeRQL is the language we exploit in our implementa-
tion. However the ideas behind our solution are language-independent and can be
applied to other RDF query languages.

4.1 RDF Queries

We assume disjoint, infinite sets I, B, and L, which denote IRIs, blank nodes
and literals. In addition, let Pred, Const and V ar be mutually disjoint sets of
predicates, constants and variables such that Const = I ∪ B ∪ L. Then (using
similar notation as in [14]) an RDF graph is a finite set of triples I∪B×I×Const.

In the following we assume a query language with queries having the following
structure (§6.19 in [15])45:

SELECT/CONSTRUCT RF FROM PE WHERE BE

where

– RF is the result form, either a set of variables (projection in select queries)
or a set of triples (construct clause in construct queries).

– PE is a path expression as defined below.
– BE is a boolean expression, that is, a string6 representing a set of constraints

in the form of (in)equality binary predicates and numerical operators such
us greater than or lower than, connected by boolean connectives (AND and
OR).

and a query will be denoted as q = (RF,PE,BE). As today’s established RDF
query languages like SeRQL [13] or SPARQL [4] do not support insert or delete
operations yet, we focus on common read operations. An example query is pro-
vided in Figure 1. Without access control enforcement, this query would return
an RDF graph containing all RDF triples matching the graph pattern defined
in the FROM block, i.e., the query answer would include identifier and name of
a person, her phone number(s) and the document(s) she is interested in.

We define a path expression as a triple (s, p, o) such that s ∈ I ∪ B ∪ V ar,
p ∈ I∪V ar and o ∈ Const∪V ar. Hereafter we will use (s, p, o) and triple(s, p, o)
(triple ∈ Pred) as synonyms. In addition, given an expression E (result form,
path or boolean expression), we will denote by vars(E) the set of all unbound
variables occurring in E.

Definition 1. Given a path expression e = (s, p, o) and a set of variable sub-
stitutions θ the function disunify(e, θ) returns the tuple (e′, BE), where e′ is a
new pattern (s′, p, o′) and BE is a set of boolean expressions such that

–


s′ = vs and bes = (vs = s) if s ∈ I ∪B

s′ = vs and bes = (vs = V alue) if s ∈ V ar, [s = V alue] ∈ θ

s′ = s and bes = ε otherwise

4 Although our examples will use the syntax of the SeRQL query language, the results
of this paper apply also to other languages with similar structure (e.g., SPARQL [4]).

5 Extending our algorithm to support UNION and INTERSECTION operators is
straightforward. The union (resp. intersection) of two queries would be expanded
into the union (resp. intersection) of the two expanded queries.

6 In the rest of the paper we also use BE to represent a set of boolean expressions.
The exact meaning will be clear from the context.

–


o′ = vo and beo = (vo = o) if o ∈ Const

o′ = vo and beo = (vo = V alue) if o ∈ V ar, [o = V alue] ∈ θ

o′ = o and beo = ε otherwise

where vs and vo are fresh variables and BE = {bes, beo}. Intuitively, the variable
substitutions for the subject and object of the pattern are extracted and converted
into boolean expressions.

The purpose of this function is to extract variable substitutions in order to be
able to reuse path expressions in the final RDF query, even if they are specified
in different policies.

CONSTRUCT * FROM {Person} foaf:name {Name};

foaf:phone {Phone}; foaf:interest {Document}

Fig. 1. Example RDF query

4.2 Specifying policies over RDF data

Using policies to restrict access to RDF statements requires to be able to specify
graph patterns (path expressions and boolean expressions), such as one can
do in an RDF query. In addition, it is desired to have the ability of checking
contextual properties such as the ones of the requester (possibly to be certified
by credentials) or time (in case access is allowed only in a certain period of time).
Therefore, we consider a policy rule pol to be a rule of the form

pred(triple(s, p, o))← cp1, . . . , cpn, pe1, . . . , pem, be1, . . . , bep.

where pred ∈ {allow, disallow}, triple(s, p, o) is a path expression as defined
above, cpi are contextual predicates (e.g., related to time, location, possession
of credentials, etc.), pei are path expressions and bei are boolean expressions. In
the following we will refer to H(pol) to the head of pol, HT (pol) to the triple in
the head of pol and B(pol) to the (possibly empty) body of pol.

Suppose that Alice specified the policies presented in Table 17. Instead of
choosing a specific language, our policies are expressed in a high level syntax,
which can be mapped to existing policy languages8. Their intended meaning is
as follows:

1. the RecommenderService is not allowed to access the phone number(s) of
members of the REWERSE project

2. recognized trusted services (which have to provide a suitable credential) are
allowed to access the phone number(s) of people Alice knows.

3. anyone can receive Alice’s phone number.
7 Note that policies might also refer to named graphs, therefore allowing for approaches

in which whole named graphs can be given access if the policy is satisfied.
8 Although the final selection of the language will have an impact in the expressiveness

and power of the kind of policies specified and contextual predicates supported.

No. Policy

pol1 deny access to triples (X, foaf:phone, Z) IF

(X, foaf:currentProject, l3s:rewerse) AND

Requester = ’RecommenderService’.

pol2 allow access to triples (X, foaf:phone, Z) IF

Requester = Service AND

Service is a trusted service AND

(l3s:alice, foaf:knows, X).

pol3 allow access to triples (l3s:alice, foaf:phone, Z).

pol4 allow access to triples (X, Y, Z) IF

Time is the current time AND

09:00 < Time AND Time < 17:00 AND

Y = foaf:name AND X != l3s:tom.

pol5 allow access to triples (l3s:alice, foaf:interest, Z) IF

(Z, rdf:type, foaf:Document) AND

(X, foaf:currentProject, P) AND

(Z, foaf:topic, T) AND (P, foaf:topic, T).

Table 1. Example of high-level policies controlling access to RDF statements

4. RDF statements containing name of entities different from Alice’s boss Tom
can be accessed during work time

5. the last policy controls access to Alice’s interests. Only interests related to
her current project(s) can be accessed.

Many algorithms could be exploited in order to evaluate policies and to
handle conflicts which arise whenever two different policies allow and deny access
to the same resource. However such algorithms are out of the scope of this paper.
Therefore, in the following we assume a simple policy evaluation algorithm like
the following one:

if a deny policy is applicable then access to the triple is denied
else if an allow policy is applicable then access to the triple is allowed
else access to the triple is denied (deny by default)

More advanced algorithms exploiting priorities or default precedences [10]
among policies could be used as well.

4.3 Policy Evaluation and Query Expansion

Given an RDF query, each RDF statement matching a pattern specified in the
FROM block is accessed and, if the policies in force allow it, returned. Our
approach consists of analyzing the set of RDF statements to be accessed and
restricting it according to the policies in force. Contextual conditions (e.g., time
constraints and conditions on properties of the requester) are evaluated by some
policy engine, whereas other constraints are added to the given query and en-
forced during query processing.

Definition 2 (Policy applicability). Given a path expression e, a set of poli-
cies P and a time-dependent state Σ [12] (which in our case determines at each
instant the extension of contextual predicates), we say that a policy pol ∈ P is
applicable to e (denoted by p̂ol(e)) iff

– σ′ = mgu(e,HT (pol)), where mgu is the most general unifier
– ∃σ, σ′′ : σ = σ′σ′′ ∧ ∀cpi ∈ B(pol), P ∪Σ |= σcpi

– if ∃bei ∈ B(pol) : ∀pei ∈ B(pol), vars(σbei)∩ (vars(σpei)∪vars(σe)) = ∅ ⇒
P ∪Σ |= σbei

and its application is a function e, pol
P,Σ−→ (PE,BE) such that for all pei,

disunify(pei, θ) = (pe′
i, BE′)

– PE = {pe′
i|pei ∈ B(pol), pe′

i 6= pei}
– B̃E = {σbei|bei ∈ B(pol)∧ ∃pei : vars(σbei)∩ (vars(σpei)∪ vars(σe)) 6= ∅}
– BE = BE′ ∪ B̃E ∪ {σi|σi = [X = Y] ∧ (X ∈ Const ∨ Y ∈ Const)}

Intuitively, a policy pol is applicable to e if the triple the policy is protecting
unifies with the path expression and all the contextual predicates and bound
boolean expressions (or those not dependent of metadata expressions in the body
of the policy) are satisfied. The return value is a set with the path expressions
found in the body of the policy and all extracted boolean expressions which have
not been evaluated and relate to the path expressions found.

Example 1. Following our example, assuming contextual predicates are satisfied,
then pol4 is applicable to (Person, foaf : name, Name) and returns (∅, {[Person! =
l3s : tom]}). In addition, pol1, pol2 and pol3 are applicable to (Person, foaf :
phone, Phone) and returns ({V ar8, foaf : currentProject, V ar9}, {[V ar8 =
Person], [V ar9 = l3s : rewerse]}), ({(V ar1, foaf : knows, V ar2)}, {[V ar1 =
l3s : alice], [V ar2 = Person]}) and (∅, [Person = l3s : alice]) respectively.

Before we describe the query expansion algorithm, and for sake of clarity, we
describe the conditions under a query does not need to be evaluated since the
result is empty. Intuitively, a query fails if there does not exist any allowed triple
to be returned according to both the query and the applicable policies, that is
if there exist a path expression for which no allowed triples exist (disallow by
default) or if there exist a path expression for which a policy (which does not
depend on path expressions) specifies that no triple is allowed (explicit disallow).

Definition 3. Given a query q = (RF,PE,BE), a set of policy rules P and a
state Σ, we say that q fails if either of the following two conditions hold:

– ∃e ∈ PE : @pol ∈ P,H(pol) = allow(T) ∧ p̂ol(e)
– ∃e ∈ PE : ∃pol ∈ P,H(pol) = disallow(T) ∧ p̂ol(e) ∧ e, pol

P,Σ−→ (∅, ∅)

Let’s denote by append(BE,Conn) (resp. prefix(BE,Conn)) a function
that given a set of boolean expressions BE and a connective (e.g., AND or
OR) returns a new boolean expression in which all the elements of BE are en-
closed by brackets and connected (resp. prefixed) by Conn. The pre-filtering
algorithm is defined as follows:

Input:
a query q = (RF, PE, BE), a set of policy rules P and a state Σ

Output:
PE+

new ≡ new optional path expressions (from allow policies)
PE−

new ≡ new optional path expressions (from disallow policies)
BE+

new ≡ conjunction of boolean expressions (from allow policies)
BE−

new ≡ conjunction of boolean expressions (from disallow policies)

policy prefiltering(q, P):
BE+

or ≡ disjunction of boolean expressions (from allow policies)
BE−

or ≡ disjunction of boolean expressions (from disallow policies)
Papp ≡ a set of applicable policies

PE+
new = PE−

new = ∅
∀e ∈ PE

BE+
or = BE−

or = ∅
// check allow policies

Papp = {pol|pol ∈ P ∧H(pol) = allow(T) ∧ p̂ol(e)}
if Papp = ∅

return query failure // no triples matching e are allowed

if ∃pol ∈ Papp : e, pol
P,Σ−→ (∅, ∅)

// all triples matching e are allowed without restrictions
else

∀pol ∈ Papp

e, pol
P,Σ−→ (PE′, BE′)

if PE′ = ∅
BE+

or∪ = append(BE′, ‘AND′)

else if ∃θ, gPE ∈ PE+
new : θ = mgu(gPE, PE′)

BE+
or∪ = append(θBE′, ‘AND′)

else
PE+

new∪ = PE′

BE+
or∪ = append(BE′, ‘AND′)

BE+new∪ = append(BE+
or, ‘OR′)

// check disallow policies

Papp = {pol|pol ∈ P ∧H(pol) = disallow(T) ∧ p̂ol(e)}
if ∃pol ∈ Papp : e, pol

P,Σ−→ (∅, ∅)
return query failure // all triples matching e are denied
∀pol ∈ Papp

e, pol
P,Σ−→ (PE′, BE′)

if PE′ = ∅
BE−

or∪ = append(BE′, ‘AND′)

else if ∃θ, gPE ∈ PE−
new : θ = mgu(gPE, PE′)

BE−
or∪ = append(θBE′, ‘AND′)

else
PE−

new∪ = PE′

BE−
or∪ = append(BE′, ‘AND′)

BE−
new∪ = append(BE−

or, ‘OR′)

Let copy(RF,PE) be a function that copies (replacing previous content)
into RF either the variables (for SELECT queries) or the path expressions (for
CONSTRUCT queries) from PE.

Input:
a query q = (RF, PE, BE)
PE+

new ≡ new optional path expressions (from allow policies)
PE−

new ≡ new optional path expressions (from disallow policies)
BE+

new ≡ conjunction of boolean expressions (from allow policies)
BE−

new ≡ conjunction of boolean expressions (from disallow policies)
Output:

an expanded query q = (RF+, PE+, BE+) MINUS (RF−, PE−, BE−)

expandQuery(q, PE+
new, PE−

new, BE+
new, BE−

new)
RF+ = RF− = copy(RF, PE)
PE+ = PE ∪ prefix(PE+

new, ‘OPT ′)
PE− = PE ∪ prefix(PE−

new, ‘OPT ′)
BE+ = BE ∪ append(BE+

new, ‘AND′)
BE− = BE ∪ append(BE−

new, ‘AND′)

where the connective ’OPT’ represents the “optional path expression” mod-
ifier in the chosen query language (e.g., ’[’ and ’]’ in SeRQL[15]).

Briefly, the algorithm extracts the new path expressions found in the body of
the policy rules. It extracts their variable bindings in order to reuse them in case
they appear in more than one policy rule. However, if the same path expression
is found in policies being applied to different from clauses, then they cannot be
reused (since conditions on different expressions are connected conjunctively).
After prefiltering each policy, a set of AND boolean expressions are extracted.
The set of all boolean expressions from applicable allow policies to one from
clause are connected by OR. The set of all boolean expressions applicable to
different from clauses are connected by AND. From that query we have to remove
the triples affected by disallow policies, which are specified in a similar fashion
and added to the query using the MINUS operator.

Example 2. The result of applying the above algorithm to the query in Fig-
ure 1 and the policies in Table 1 (assuming that time is 15:00, the requester is
’RecommenderService’ and it is trusted) is shown in Figure 2.

5 Implementation and Experiments

In this section we present the implementation of the ideas (and algorithm) pre-
sented in previous sections in order to transform an arbitrary RDF repository
into an access controlled RDF repository. We first briefly describe the general
architecture and evaluate the implementation in terms of scalability afterwards.

CONSTRUCT {Person} foaf:name {Name};

foaf:phone {Phone}; foaf:interest {Document}

FROM {Person} foaf:name {Name};

foaf:phone {Phone}; foaf:interest {Document}

[{Var1} foaf:knows {Var2}]

[{Var3} rdf:type {Var4}, {Var3} foaf:topic {Var5},

{Var6} foaf:currentProject {Var7}, {Var7} foaf:topic {Var5}]

WHERE (((Person != l3s:tom))) AND

(((Var2 = Person) AND (Var1 = l3s:alice)) OR

((Person = l3s:alice))) AND

(((Var3 = Document) AND (Var2 = Person) AND

(Person = l3s:alice) AND (Var4 = foaf:Document)))

MINUS

CONSTRUCT {Person} foaf:name {Name};

foaf:phone {Phone}; foaf:interest {Document}

FROM {Person} foaf:name {Name};

foaf:phone {Phone}; foaf:interest {Document}

[{Var8} foaf:currentProject {Var9}]

WHERE (((Var8 = Person) AND (Var9 = l3s:rewerse)))

Fig. 2. Expanded RDF query

5.1 Architecture

Our implementation adds an additional layer on top of an arbitrary RDF repos-
itory (therefore being suitable for reusability among different ones). Incoming
queries are first processed and extended according to access control policies be-
fore they are directed to the underlying RDF repository.

The Architecture of our implementation, illustrated in Figure 3, is composed
of three main modules: Query Extension, Policy Engine and RDF Repository.

Query Extension. The main task of this core module is to rewrite a given
query in a way that only allowed RDF statements are accessed and returned.
It is in charge of querying the policy engine for each FROM clause of the
original query in order and expand it with the extra path expressions and
constraints (cf. §4.3). Our initial implementation provides query extension
capabilities for the SeRQL [13] query language.

Policy Engine. This module is responsible for the policy (partial) evaluation.
Input information (query context) such as the requester or disclosed creden-
tials may be used as well. In the actual implementation we use the Protune
policy language [12] and its framework.

RDF Repository. After extending a query the extended query can be passed
to the underlying RDF repository. Since our solution is repository-independent,
any store supporting SeRQL, such as Sesame [2] (which we integrated in our
actual implementation), can be used. The result set returned contains only
allowed statements and can be directly returned to the requester.

Fig. 3. Architecture - Access Controlled RDF Repository

5.2 Experiments and Evaluation

We set up a Sesame database with more than 3,000,000 RDF statements about
persons and their exchanged e-mails into an AMD Opteron 2.4GHz with 32GB
memory and send the queries through the network from a Dual Pentium 3.00GHz
with 2GB. We checked our approach in the “worst” scenario by setting an initial
query returning a very large number of results (1,280,000 in this case). We then
automatically generated extra path and boolean expressions, extracted from
policies as described in §4.3, which were added to the original query. Since we
wanted to test the impact of allow and disallow policies in our algorithm, we
evaluated both expansion options: with and without the MINUS operator. All
these queries were executed and we measured the time needed for its evaluation
in order to see its impact. The results are shown in Figure 4.

Both graphs show how adding many WHERE clauses (extracted from allow
policies) increases linearly the evaluation time. The reason for this increasement
is a) each WHERE clause specifies new triples that are allowed to be accessed
and as a consequence, the number of triples that will be returned and b) the new
added clauses require time for its evaluation. The reason for the strong increase
when adding 6 FROM clauses is that the new clauses produced a triplication
in the number of triples to consider, even though none of the new ones were
to be returned (so we believe that appropriate optimizations in the repository
would help to reduce this impact too). We also made other experiments where
the initial query was more selective and the addition of FROM clauses produced
only linear increase on the evaluation time.

These results demonstrate that the approach described in this paper scales
to a larger number of policies, especially when policies specify only boolean
constraints or when the path expressions are selective, since the cost might well

(a) (b)

Fig. 4. (a) Response time when increasing the number of FROM and WHERE clauses
(with allow policies), and (b) same as before including a MINUS between two queries
(allow and disallow policies).

be accepted in order to provide fine-grained access control. For low selective
queries, optimizations are required. It is also important to note that even if
thousands policies are specified, not all will contribute to expand the original
query with new expressions. Only those protecting the triples in the FROM
clause of the original query which have satisfied their contextual constraints will
be taken into account, therefore reducing the number of applicable policies.

As main conclusions we would highlight that fine-grained access control
comes with a cost. However, this cost may be acceptable for semantic web appli-
cations and services that must deal with sensitive data. For example, applications
that retrieve personal data from the user, as in our Personal Reader scenario,
and which use highly selective queries, may benefit from this solution and allow
users to define their own policies over their data. In addition, optimizations on
the generation of new queries and reordering of constraints as well as natively
implemented optimizations in the RDF repository may help to further reduce
the response query time.

6 Conclusions and Future Work

Semantic Web applications might require to store and access metadata while still
preserving the sensitive nature of such data, especially in multi-service and multi-
user environments. However, current RDF stores do not provide access control
mechanisms that suit this requirement. In this paper we presented an approach
(independent of the RDF store used) for the integration of expressive policies in
order to provide a fine-grained access control mechanism for RDF repositories.
These policies may state conditions on the RDF nature and content of the RDF
store as well as other external (e.g., contextual) conditions. The evaluation of
the process is divided in order to pre-evaluate conditions of the policy engine
not depending on the RDF store and relying on the highly optimized query
evaluation of semantic databases for RDF pattern and content constraints. We
presented an implementation of those ideas and showed with our evaluation

how the cost of this access control layer scales and might be acceptable for
applications requiring fine-grained access control over their (possibly sensitive)
data.

We are currently investigating other optimizations in order to improve the
evaluation of our implementation such as reordering of constraints in a given
query as well as caching techniques. In addition, we are applying and imple-
menting this approach to the SPARQL query language.

Acknowledgements. We thank the anonymous reviewers, Axel Polleres and Piero

Bonatti for their feedback and help to improve this paper.

References

1. Abel, F., Baumgartner, R., Brooks, A., Enzi, C., Gottlob, G., Henze, N., Herzog,
M., Kriesell, M., Nejdl, W., Tomaschewski, K.: The Personal Publication Reader,
semantic web challenge 2005. In: ISWC. (nov 2005)

2. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF Schema. In: ISWC. (July 2002)

3. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. In: WWW, NY, USA (2005)

4. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/
5. Dietzold, S., Auer, S.: Access control on RDF triple stores from a semantic wiki

perspective. In: Scripting for the Semantic Web Workshop at 3rd European Se-
mantic Web Conference (ESWC). (June 2006)

6. Bizer, C., Oldakowski, R.: Using context- and content-based trust policies on the
semantic web. In: WWW, NY, USA (2004)

7. Reddivari, P., Finin, T., Joshi, A.: Policy based access control for a RDF store.
In: Proceedings of the Policy Management for the Web Workshop. A WWW 2005
Workshop, W3C (May 2005) 78–83

8. Jain, A., Farkas, C.: Secure Resource Description Framework: an access control
model. In: ACM SACMAT, CA, USA (2006)

9. Uszok, A., Bradshaw, J.M., Jeffers, R., Suri, N., Hayes, P.J., Breedy, M.R., Bunch,
L., Johnson, M., Kulkarni, S., Lott, J.: KAoS policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and enforcement.
In: POLICY. (2003)

10. Kagal, L., Finin, T.W., Joshi, A.: A policy language for a pervasive computing
environment. In: POLICY. (June 2003)

11. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K.E., Winslett, M.: No reg-
istration needed: How to use declarative policies and negotiation to access sensi-
tive resources on the semantic web. In: 1st European Semantic Web Symposium
(ESWS 2004). Volume 3053 of Lecture Notes in Computer Science., Heraklion,
Crete, Greece, Springer (May 2004)

12. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: POLICY 2005, Stockholm, Sweden (June 2005)

13. Broekstra, J., Kampman, A.: SeRQL: An RDF query and transformation language.
(August 2004)

14. Polleres, A.: From SPARQL to rules (and back). In: WWW. (2007)
15. Aduna: The SeRQL query language (revision 1.2). http://www.openrdf.org/doc/

sesame/users/ch06.html

